Nature & Animals

Pseudo-halide anion engineering for α-FAPbI 3 perovskite solar cells

  • 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 13, 838–842 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Park, N.-G. et al. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Lu, H., Krishna, A., Zakeeruddin, S. M., Grätzel, M. & Hagfeldt, A. Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23, 101359 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Pellet, N. et al. Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article 

    Google Scholar
     

  • 11.

    Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Herz, L. M. et al. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    NREL. Best Research-Cell Efficiency Chart https://www.nrel.gov/pv/cell-efficiency.html (accessed 17 March 2021).

  • 14.

    Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 16.

    Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Yang, S. et al. Thiocyanate assisted performance enhancement of formamidinium based planar perovskite solar cells through a single one-step solution process. J. Mater. Chem. A 4, 9430–9436 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Kim, D. H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 3, 1734–1745 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Kim, D. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155–160 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1807029 (2019).

    Article 

    Google Scholar
     

  • 23.

    Moore, D. T. et al. Direct crystallization route to methylammonium lead iodide perovskite from an ionic liquid. Chem. Mater. 27, 3197–3199 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Seo, J. et al. Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv. Energy Mater. 6, 1600767 (2016).

    Article 

    Google Scholar
     

  • 25.

    Nayak, P. K. et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 7, 13303 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Meng, L. et al. Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem. 41, 43–51 (2020).

    Article 

    Google Scholar
     

  • 27.

    Khan, Y. et al. Waterproof perovskites: high fluorescence quantum yield and stability from a methylammonium lead bromide/formate mixture in water. J. Mater. Chem. C 8, 5873–5881 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Askar, A. M. et al. Composition-tunable formamidinium lead mixed halide perovskites via solvent-free mechanochemical synthesis: decoding the Pb environments using solid-state NMR spectroscopy. J. Phys. Chem. Lett. 9, 2671–2677 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Zhou, Z. et al. Synthesis, microwave spectra, X-ray structure, and high-level theoretical calculations for formamidinium formate. J. Chem. Phys. 150, 094305 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Ross, R. et al. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Tress, W. et al. Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015).

    Article 

    Google Scholar
     

  • 33.

    Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Yang, D. et al. Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9, 3071–3078 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Kuik, M., Koster, L. J., Wetzelaer, G. A. & Blom, P. W. Trap-assisted recombination in disordered organic semiconductors. Phys. Rev. Lett. 107, 256805 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Green, M. Accuracy of analytical expressions for solar cell fill factors. Solar Cells 7, 337–340 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Wang, Y. et al. Stabilizing heterostructures of soft perovskite semiconductors. Science 365, 687–691 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button

    Adblock Detected

    Please consider supporting us by disabling your ad blocker