Nature & Animals

Strong tough hydrogels via the synergy of freeze-casting and salting out

  • 1.

    Maganaris, C. N. & Paul, J. P. In vivo human tendon mechanical properties. J. Physiol. (Lond.) 521, 307–313 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Gu, L., Jiang, Y. & Hu, J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 31, 1904311 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Hong, S. et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv. Mater. 27, 4034–4040 (2015).

    Article 

    Google Scholar
     

  • 4.

    Xiang, C. et al. Stretchable and fatigue-resistant materials. Mater. Today 34, 7–16 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Huang, Y. et al. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater. 27, 1605350 (2017).

    Article 

    Google Scholar
     

  • 6.

    Zhang, H. et al. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Zhang, H. Ice Templating and Freeze-Drying for Porous Materials and their Applications (Wiley-VCH, 2018).

  • 8.

    Qin, H., Zhang, T., Li, N., Cong, H. P. & Yu, S. H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 10, 2202 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Mredha, M. T. I. et al. Anisotropic tough multilayer hydrogels with programmable orientation. Mater. Horiz. 6, 1504–1511 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Mredha, M. T. I. et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures. Adv. Mater. 30, 1704937 (2018).

    Article 

    Google Scholar
     

  • 11.

    Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Hu, X., Vatankhah-Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Lin, P., Ma, S., Wang, X. & Zhou, F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv. Mater. 27, 2054–2059 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    He, Q., Huang, Y. & Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28, 1705069 (2018).

    Article 

    Google Scholar
     

  • 17.

    Lin, S. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Bai, R., Yang, J., Morelle, X. P. & Suo, Z. Flaw-insensitive hydrogels under static and cyclic loads. Macromol. Rapid Commun. 40, 1800883 (2019).

    Article 

    Google Scholar
     

  • 19.

    Lin, S., Liu, J., Liu, X. & Zhao, X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc. Natl Acad. Sci. USA 116, 10244–10249 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Illeperuma, W. R. K., Sun, J. Y., Suo, Z. & Vlassak, J. J. Fiber-reinforced tough hydrogels. Extreme Mech. Lett. 1, 90–96 (2014).

    Article 

    Google Scholar
     

  • 21.

    Lin, S. et al. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter 10, 7519–7527 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    King, D. R., Okumura, T., Takahashi, R., Kurokawa, T. & Gong, J. P. Macroscale double networks: design criteria for optimizing strength and toughness. ACS Appl. Mater. Interfaces 11, 35343–35353 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Fan, H. & Gong, J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53, 2769–2782 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Wang, Z. et al. Stretchable materials of high toughness and low hysteresis. Proc. Natl Acad. Sci. USA 116, 5967–5972 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Iwaseya, M., Watanabe, M., Yamaura, K., Dai, L. X. & Noguchi, H. High performance films obtained from PVA/Na2SO4/H2O and PVA/CH3COONa/H2O systems. J. Mater. Sci. 40, 5695–5698 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Zhang, Y. & Cremer, P. S. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10, 658–663 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    van de Witte, P., Dijkstra, P. J., Van Den Berg, J. W. A. & Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 117, 1–31 (1996).

    Article 

    Google Scholar
     

  • 29.

    Lake, G. J. & Thomas, A.G. The strength of highly elastic materials. Proc. R. Soc. A 300, 108–119 (1967).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Kinloch, A. J. & Young, R. J. (eds) Fracture Behaviour of Polymers (Springer Science & Business Media, 1984).

  • 31.

    Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014).

  • 32.

    Wood, L. A. Uniaxial extension and compression in stress-strain relations of rubber. Rubber Chem. Technol. 51, 840–851 (1978).

    Article 

    Google Scholar
     

  • 33.

    Ebrahimi, D. et al. Silk – its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 1, 864–876 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Long, R. & Hui, C. Y. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter 12, 8069–8086 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Cryst. 48, 917–926 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Peppas, N. A. & Merrill, E. W. Differential scanning calorimetry of crystallized PVA hydrogels. J. Appl. Polym. Sci. 20, 1457–1465 (1976).

    CAS 
    Article 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button

    Adblock Detected

    Please consider supporting us by disabling your ad blocker